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ScienceDirect
The dense connectivity in the brain means that one neuron’s

activity can influence many others. To observe this

interconnected system comprehensively, an aspiration within

neuroscience is to record from as many neurons as possible at

the same time. There are two useful routes toward this goal:

one is to expand the spatial extent of functional imaging

techniques, and the second is to use animals with small brains.

Here we review recent progress toward imaging many neurons

and complete populations of identified neurons in small

vertebrates and invertebrates.
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Introduction
Brain function relies on complex interactions between

large populations of neurons across many brain areas. To

build an understanding of the complete system, it may be

necessary to observe neural activity across large fractions

of the brain. Ideally then, one would aspire to obtain full

spatiotemporal access to the whole brain at cellular and

millisecond resolution. Since this is currently impossible,

neuroscientific studies have to rely on recordings from

relatively small numbers of neurons covering limited

fractions of the entire brain. Although impressive progress

has been made using this strategy, an alternative approach

is to study small systems, where larger fractions of the

intact brains can be studied at once. Animals with small

brains might have a more limited behavioral repertoire

than larger mammals, which may reduce the set of phe-

nomena one can study; although complexity appears to

exist on every level of even small neural systems [1,2].

That said, the practical attraction to small brains is the
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ease of recording from a greater fraction of the constituting

neurons, so that fewer stones are left unturned in the

search for mechanism. In the past few years, optical

imaging techniques have increased both in temporal and

spatial capabilities [3–7,8��,9��,10��,11,12,13��], kindling

the hope that the combination of large-scale imaging, small

brains of genetic model organisms and tools including

optogenetics, computational techniques and connectomics

[14,15] may accelerate the process of uncovering general

principles of the workings of animal brains (Figure 1).

Here we review several imaging techniques that have

been used to advance our understanding of different

aspects of brain function, including sensorimotor proces-

sing [5,16,17��,18,19,20��], learning [21], sensation

[16,22��,23��,24�,25,26] and the development of function-

al circuits [27]. This review is not meant to be exhaustive

but designed to give an idea of the past and potential

applications of large-scale imaging techniques.

Knowledge of the behavioral repertoire is a crucial deter-

minant for which questions can be studied in a given

model system. The behavioral repertoire of the small

species discussed here is relatively unknown, so to match

the question to the model organism it is important to push

for a more comprehensive understanding of their behav-

ioral repertoire [28]. In the following we will briefly

discuss various activity indicators, give an overview of

established small model organisms and then discuss the

respective advantages of various imaging technologies.

We will conclude with a brief discussion of emerging

model organisms and future perspectives.

Activity indicators and imaging techniques
Optical methods for recording neural activity depend on

the sensitivity of the indicators of neural activity. The

past years have seen dramatic improvements in geneti-

cally encoded calcium indicators [29�], increasing the

extent to which single action potentials can be decoded

from calcium signals. In addition, new genetically

encoded voltage sensors are under development

[30�,31,32], making it possible to record action potentials

as well as subthreshold voltage signals in cell bodies and

their processes. Neural communication is mediated by

neurotransmitters, for which indicators are also being

developed, such as the glutamate sensor iGluSnFR

[33]. With the development of these genetically encoded

indicators, the power of microscopy methods for neuro-

science will continue to increase.

How are these activity indicators imaged in three dimen-

sions? Two-photon microscopy [3] is the workhorse of
www.sciencedirect.com
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Schematic of large-scale imaging, analysis and perturbation methods.

Many imaging techniques can be used for imaging neuronal activity at

the population up to whole-brain level. Small brains have the

advantage of fitting in the field of view of a microscope objective, and

allowing orthogonal access for light-sheets. Analysis methods can be

used for finding functional anatomical structure (left) and investigating

neuronal dynamics (right). Optogenetic perturbations, genetic lesions

and other manipulations, as well as anatomical characterization, may

be based on insights gained from analysis of large-scale imaging data.
neuronal imaging, and has been used in many neurosci-

ence model organisms. The key feature to two-photon

imaging is that only a single point in space is excited,

reducing photobleaching from extraneous excitation, and

increasing depth penetration, making it extremely useful

for imaging at scales from the synapse level [34] to the

whole-brain level [4,5,17��]. Scanning a two-photon exci-

tation point through a three dimensional volume can be

slow, but techniques exist for speeding up this process to

enable fast three-dimensional two-photon imaging.

These methods include resonant scanning, high-speed

random-access imaging using acousto-optical deflectors

[6,7,35], simultaneous multi-point excitation [11] and

temporal focusing [4]. Although these techniques sample

the volume sparsely, along a continuous line or at a

discrete set of points, they can sample in three dimen-

sions. Advantages of these methods is that their depth

penetration is good; they use only one objective; and the

infrared excitation light is mostly invisible to the animals.
www.sciencedirect.com 
A combination of structured illumination and volume

projection microscopy [11] has been used in zebrafish

at high speeds (30 Hz) and shown to uncover consistent

temporal sequences of activity in several dozens of points

distributed in three dimensions across the brain.

Light-sheet imaging is a volumetric imaging method that,

like two-photon imaging, relies on local excitation of the

tissue, but with a line or a plane instead of a point,

speeding up volumetric imaging by one or two orders

of magnitude [9��,10��,36] while retaining high spatial

resolution. One or more excitation objectives, orthogonal

to the detection objective, guide a thin ‘pencil’ or a thin

‘sheet’ of light that scans through the sample, while a

detection objective images the illuminated plane, achiev-

ing high spatial resolution and fairly good temporal reso-

lution. In zebrafish this method can image about 3 brain

volumes of 100,000 neurons per second, likely to increase

in the future. The advantage of volumetric imaging fast

enough to track calcium indicator dynamics is that far-

away neurons are imaged at the same time, so that joint

activity of populations of neurons can be interrogated —

spontaneously or in response to a given stimulus or task.

In addition, data rates are high, so that experimental

throughput is increased.

Light field imaging [8��,12] is a fast volumetric imaging

technology that relies on microlens optics and deconvolu-

tion algorithms to reconstruct an imaged volume from

two-dimensional images, so that for any image taken with

the camera, a volume of imaged tissue can be approxi-

mated. The spatial resolution is lower than two-photon or

light-sheet imaging, but the temporal resolution is limited

only by the camera and photon count. Grosenick

et al. used this technique to image from zebrafish [13��]
and mammalian brains (L. Grosenick, M. Broxton, K.

Deisseroth, personal communication), and Prevedel

et al. [8��] used this technique to image from entire

C. elegans and zebrafish brains. This technique may be

especially useful for three-dimensional voltage imaging

due to its high temporal resolution.

The above is not an exhaustive survey of three-dimen-

sional imaging techniques, and other methods exist and

are under development. In combination with advances in

protein engineering and computational methods, further

developments of microscopy techniques will generate

more detailed and comprehensive datasets and a better

understanding of the richness of network dynamics.

Small-brained genetic model organisms
Out of the many small-brained animal species, including

Xenopus [37], the crab stomatogastric ganglion [2], the

leech [38��], Aplysia [39], medaka fish [40], bees [41],

locusts [42�], and others, three in particular have become

genetic model organisms widely used in neuroscience —

the fruit fly, the zebrafish and the worm. Drosophila
Current Opinion in Neurobiology 2015, 32:78–86
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melanogaster occupies a unique place in neuroscience

mainly because of its extensive genetic toolkit. Primarily

through the GAL4-UAS system [43] and large libraries of

GAL4 lines [44], it is a routine matter to label, silence,

excite or otherwise modify defined populations of neu-

rons in flies. The fly has long been used for genetic studies

of behaviors such as circadian rhythms [45], but more

recent studies demonstrate fairly complex behaviors such

as aggression [46] and place learning [47��]. Combining

these features with virtual reality setups [20��] makes for a

powerful system for large-scale imaging during behavior.

The larva has the advantage of a small nervous system and

quite an extensive behavioral repertoire and has also been

used for calcium imaging [48,49].

Zebrafish or Danio rerio is a vertebrate genetic model

organism that benefits from being transparent, making it

straightforward to image large populations of neurons

[5,17��,24�,50��] without requiring any surgery to access

the brain. Although genetic tools are less developed than

in the fruit fly, the GAL4-UAS system has been success-

fully applied [51,52] and many developments are ongo-

ing. Immobilized preparations allow for the study of

behaviors such as the optokinetic response

[17��,24�,53], motor adaptation [5,54], associative learning

[21] and locomotion [55]. This model organism is espe-

cially useful for large-scale three-dimensional imaging

techniques [8��,10��,13��] which will be discussed below.

The nematode Caenorhabditis elegans is a small, transpar-

ent organism with a well-developed genetic toolkit. This

animal has 302 neurons (the hermaphrodite), and its

connectome has been mapped [56], which is of great

utility to neuroscientific studies [1]. Its relatively slow

and smooth locomotion allow for imaging and manipula-

tion of freely moving animals at the single-cell level

[8,57,58��,59]. Its behavioral repertoire includes non-as-

sociative and associative learning [60], exploration–ex-

ploitation switching [61�] and other behaviors, the neural

underpinnings of which can be studied in great detail

using the tools available for this animal.

Neural imaging small brains
Having briefly covered the prevalent model organisms and

techniques discussed in this review, we turn to some

examples of how the combination of these tools and animals

has been used to gain insight into neural processing.

The combination of microscopy, genetic tools and virtual-

reality systems for tethered Drosophila makes this animal

a powerful model organism within systems neuroscience.

These tools have been used by Seelig and Jayaraman

[20��] to investigate sensorimotor processing in an area in

the central complex of the fly. Arborizations of ring

neurons in this area (Figure 2a) are thought to be part

of a sensorimotor processing network that may subserve

behaviors such as navigation [47��]. The authors mapped
Current Opinion in Neurobiology 2015, 32:78–86 
visual responses in this population and found responses

specific to different points in space (Figure 2b), with

orientation and in some cases direction tuning. Using a

virtual reality setup for tethered flies (Figure 2c) [62�,63�],
it was additionally found that visual responses could be

modulated by the locomotive state of the animal, so that

visual responses were suppressed during flight. Although

the number of neurons recorded from was moderate, the

importance of this approach is that the recorded neurons

form a complete, and genetically defined population. This

provides valuable constraints on the problem of under-

standing what this population of central neurons is doing.

Similar approaches have been used by Maisak et al. [22��],
and Strother et al. [23��] for mapping visual responses

along the motion pathway of the Drosophila visual system.

Using both cell-type specific Gal4 lines and panneuronal

GCaMP5G expression, the authors discovered layer-spe-

cific processing of visual inputs. In the medulla, visual

input was found to be separated into parallel light-off and

light-on pathways. These parallel pathways are then

combined in the lobula plate, where neural responses

to visual motion were shown to be segregated into four

layers, each containing the terminals of neurons encoding

motion in one of four different directions (Figure 2d and

e). Many of the imaged neurons are quite small and hard

to record from using electrophysiology, so two-photon

imaging has been crucial for unraveling these aspects of

fly motion vision. Furthermore, much processing in inver-

tebrates but also vertebrates occurs in the neuropil, which

is easily accessible to two-photon imaging. Larger-scale

recordings from many neurons in Drosophila are expected

in the future, for example, in Campbell et al. [25] more

than a hundred neurons were recorded simultaneously in

the mushroom body of the fly to interrogate odor repre-

sentations at the population level.

The above are examples of how the unique strengths of a

model organism have been used for studying a specific

question. The unique strength of the larval zebrafish is

probably its transparency. This feature has been exploited

to perform large-scale imaging [5,10��,17��,24�,50��,64] in

these animals, sometimes covering the entire brain–se-

quentially [17��] or at the same time [8��,10��,50��]. As in

Drosophila [62�,63�] and mice [65], setups have been

created where animals can be presented with various

stimulus modalities, while their behavior is monitored

through camera-registered tail movement in head-embed-

ded animals or through electrical correlates of intended

behavior (fictive swimming), in paralyzed animals. These

behavioral setups, designed for small transparent animals,

provide a powerful platform for studying brain mechanisms

of sensorimotor transformations and other neural processes

at a large-scale level.

Miri et al. [53] quantified and mapped the time scales of

persistent activity in the oculomotor integrator circuit
www.sciencedirect.com
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Figure 2
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Two-photon imaging in Drosophila. (a) Anatomical structures in Drosophila central complex. LTR, lateral triangle neurons, whose glomeruli were

recorded from in the ellipsoid body (EB). (b) Spatial tuning of glomeruli responses. The responses were also tuned to orientation and sometimes

direction (not shown). (c) Virtual reality setup for flying Drosophila, which was used to study modulation of visual responses in the EB during flight.

Scale bar: 5 mm. (d) Anatomy of part of the visual system of Drosophila. Directional responses were studied in the lobula plate. Scale bar: 20 mm.

(e) Responses in lobula plate neurpil are directionally tuned. Scale bar: 5 mm. Panels a–c adapted with permission from Seelig and Jayaraman

(2013) and d and e from Maisak et al. (2014).
using two-photon imaging of synthetic calcium indicators.

Using regression analysis to relate neuronal activity to

behavior (Figure 3a), their work showed the existence of

spatial gradients of time constants, which inspired a

model of an attractor network that could underlie eye

movements. Similar regression analyses was performed in

Portugues et al. [17��] to analyze whole-brain representa-

tions of eye position, visual input and swimming, gener-

ating maps of stimulus and motor representations

(Figure 3b) that were consistent across multiple fish.

The zebrafish is well suited for light-sheet imaging,

because its transparent brain allows access to both the

detection objective and orthogonal excitation objectives.

In the first applications to small brains, whole-brain

activity in zebrafish [9��,10��] was imaged, leading to
www.sciencedirect.com 
the discovery of brain-wide correlated patterns of activity,

spanning both cell bodies and neuropil. In a further

development of this imaging technique, it was paired

with a virtual reality setup, this time allowing for whole-

brain activity to be recorded during behavior and visual

stimulation [50��,66�]. Whole-brain maps of visual and

motor related activity could be constructed from these

data. The key advantage to this whole-brain imaging

paradigm is that interdependent activity of large popula-

tions of neurons can be analyzed. This allows for the

quantification of trial-by-trial and behavior-dependent

variations in neural activity, as well as dynamic coupling

between different neuronal populations, For example, in

Freeman et al. [66�] analysis of whole-brain activity during

behavior led to the identification of a small population of

neurons in the dorsal hindbrain whose activity is strongly
Current Opinion in Neurobiology 2015, 32:78–86
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Figure 3
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Imaging during behavior in larval zebrafish. (a) Imaging in the hindbrain during eye movements. Eye movements were monitored using a camera

while dye-loaded cells in the hindbrain were imaged with a two-photon microscope. Regression analysis could be used to identify the combination

of behavioral variables that best determined the neural activity. The example cell (1) is strongly tuned to left eye position. (b) Whole-brain two-

photon imaging in behaving zebrafish expressing GCaMP5G panneuronally. Individual planes are sequentially imaged with a two-photon

microscope during rotational motion of a scene displayed underneath the fish, generating a phase response map across the brain representing the

phase of the oscillating stimulus at which the neural response is strongest. At the same time, tail and eye position are monitored so that neural

activity can be related to behavior. (c) Whole-brain light-sheet imaging in fictively behaving larval zebrafish. The imaging rate is up to three brain

volumes per second, so that relationships between neurons across the brain can be investigated, as well as their correlation to behavior and

visual input. Depicted is a top-projection of whole-brain activity during the optomotor response, just before stimulus onset (left) and six seconds

after stimulus onset (right). Electrical recordings from the motor neuron axons in the tail of the paralyzed animals record intended swimming

behavior. Inset scale bar: 20 mm. Panel a adapted with permission from Miri et al. (2011), b from Portugues et al. (2014), c from Vladimirov et al.

(2014).
coupled and strictly anticorrelated with swimming, repre-

senting a previously unknown neural population that can

now be investigated in more detail.

Further studies have generated insight into which cir-

cuits are involved in motor adaptation [5] and in tuning

of visual neurons to motion stimuli [24�], olfactory

responses [67] and associative learning [21]. The behav-

ioral repertoire of larval zebrafish is actively being ex-

plored, with recent findings pointing to the existence of

relatively complex behaviors including fear behavior

[68] and long-term memory from social reward in one-

week old fish [69], with undoubtedly more interesting

behaviors to be discovered and characterized in the

future.

Brain-wide surveys such as the above are useful because

the chances of unobserved nodes in the network are

reduced. The leech midbody segmental ganglion repre-

sents a neural system that is similarly autonomous, in that

it can independently generate different behaviors, such as

swimming and crawling. The ganglion of about 400 cells

(Figure 4a) is small enough to fit under a microscope

objective, so that about 1/3rd of the structure can be

imaged. Using synthetic voltage indicators, Briggman

et al. [38��] imaged activity in over 100 neurons and used

electrical stimulation to elicit either fictive swimming or

crawling, reported through the large-scale voltage imag-

ing. Identical electrical stimulation could elicit either
Current Opinion in Neurobiology 2015, 32:78–86 
behavior; remarkably, before the decision which behavior

to execute was made, single-neuron and network-level

analysis revealed that network activity already reflected

the future decision (Figure 4b and c). Here, in a tiny

nervous system, decision making processes could be

tracked by large-scale, single-cell voltage imaging.

The above work was all done in immobilized animals.

Imaging neuronal populations in freely behaving ani-

mals would allow for monitoring network activity in

their native state. In mammals, it is possible to mount

electrode drives and small microscopes [70] on the

heads of animals, but as organisms get smaller and

microscopes get bigger, this becomes difficult. Alterna-

tive strategies have been developed, such as, in zebra-

fish, the use of bioluminescence as a reporter of neural

activity that does not depend on excitation light from

microscopes [71]. In C. elegans, a moving stage allows

neurons to be imaged in freely behaving animals

[57,58��,59]. Luo et al. [72] used this strategy to image

a series of single neurons, part of a sensorimotor net-

work, in freely moving C. elegans. Larsh et al. [73]

developed a strategy to record defined single neurons

in many animals at the same time. Imaging activity

from moving worms can be extended to volumetric

imaging using, for example, light field microscopy. In

most other species, it is likely that truly large-scale

imaging and manipulation of neuronal activity in freely

behaving animals will remain a challenge.
www.sciencedirect.com
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Figure 4
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Analysis of population response in the leech ganglion. (a) Micrograph of the ventral side of the ganglion, containing about 160 cells. (b) The linear

discriminant weights for all 143 recorded neurons that best separate trials on which neural stimulation led to fictive swimming versus fictive

crawling. (c) Representation of population activity in three dimensions, using projections onto the first three components arising from principal

component analysis. Swimming trials are shown in blue, crawling trials in red. Using the linear discriminant weights, population activity can be

decoded to predict swimming vs. crawling about a second before the behavior is evident at the nerves exiting the ganglion. Panels a–c adapted

with permission from Briggman et al. (2005).
Emerging model organisms
Currently the most prevalent genetic model organisms

with a brain small enough to fit under a microscope

objective are Drosophila, zebrafish and C. elegans. It goes

without mention that the mouse and the rat are widely

used mammalian model organisms with a rich genetic

toolkit and a huge impact on neuroscience. The devel-

opment of other model organisms is an exciting venue

within neuroscience. The transgenic marmoset monkey

may combine the flexibility in the behavior of primates

with a relatively small brain [74]; the Etruscan shrew [75]

is a very small mammal; the dart frog is a small amphibian

with a rich behavioral repertoire. Furthermore, the re-

cently established CRISPR/Cas9 system [76] will be very

useful for inserting transgenes into non-genetic model

organisms. The Hydra is a small organism with a relatively

simple nerve net which has recently been genetically

engineered to be made accessible for imaging studies

(Rafael Yuste, personal communication). Not only do

these species have their unique advantages for neurosci-

entific studies; cross-species comparison of brain function

is in itself important for understanding how nervous

systems use strategies to solve problems faced by animals

in general.

Outlook
The best approaches toward understanding brain func-

tion in many cases remain unclear. There are advantages

to using small model organisms for neuroscience, but not

all behaviors can be studied in these animals, as their

behavioral repertoire is generally more limited than that

of larger mammals. However, a comparison to rodent

work in the last decade is informative, where several

behaviors traditionally studied in primates have been

shown to also work in rodents [77]. Similarly, place

learning, a behavior typically studied in rodents, has been
www.sciencedirect.com 
shown to exist in Drosophila [47��]. Modulation of visual

responses by behavioral state has been observed in mouse

[78] as well as in Drosophila [62�,79]; mammals fight [80]

and so do flies [81]; and large animals make decisions

between exploration and exploitation of the environment,

and so do C. elegans [61�]. Thus, although many complex

mammalian behaviors must be studied in mammals and

of course a mouse or primate will likely tell us more about

human brain function than a fly, fish or worm, as knowl-

edge of the behavioral repertoire and neuroanatomy of

the species discussed here expands, we expect that small

brains will increasingly play a role in generating under-

standing of the principles of brain function.

In parallel to the progress that is being made in the

quantitative characterization of many forms of behavior,

advances are being made in microscopy, protein engi-

neering, and computational methods. As reporters of

neural activity continue to get more accurate and diverse,

and microscopy methods increase their spatial coverage

and temporal resolution, we can expect increasingly de-

tailed information about the large-scale function of these

small brains.
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