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ScienceDirect
Due to their small size and transparency, zebrafish larvae are

amenable to a range of fluorescence microscopy techniques.

With the development of sensitive genetically encoded calcium

indicators, this has extended to the whole-brain imaging of

neural activity with cellular resolution. This technique has been

used to study brain-wide population dynamics accompanying

sensory processing and sensorimotor transformations, and has

spurred the development of innovative closed-loop behavioral

paradigms in which stimulus–response relationships can be

studied. More recently, microscopes have been developed that

allow whole-brain calcium imaging in freely swimming and

behaving larvae. In this review, we highlight the technologies

underlying whole-brain functional imaging in zebrafish, provide

examples of the sensory and motor processes that have been

studied with this technique, and discuss the need to merge

data from whole-brain functional imaging studies with

neurochemical and anatomical information to develop holistic

models of functional neural circuits.
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Population-scale imaging of neural activity in
zebrafish larvae
The human brain comprises hundreds of distinct struc-

tures, thousands of cell types, billions of neurons, and

trillions of connections, and understanding its function is

one of the most daunting challenges facing the scientific

community. Observations of brain function initially relied

on lesions, either occurring sporadically in humans or in a

targeted fashion in animal models, that allowed infer-

ences about the brain regions or tracts necessary for

producing behavior. More recently, large scale imaging
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techniques such as fMRI have revealed broad patterns of

activity that coincide with perception, thought, or behav-

ior. For more than half a century, electrophysiology has

permitted the fine-grained analyses of the functions of

individual neurons. Although these approaches have

made enormous contributions to our understanding of

the brain’s functional architecture, a gap exists between

large scale techniques, which have difficulty reporting on

activity in individual neurons, and electrophysiology,

which gives detailed information on the activity of a

relatively small number of neurons. Neither reveals pat-

terns of activity spread across the dozens, hundreds, or

thousands of individual neurons whose orchestrated activ-

ity contribute to perception and behavior.

Recent advances in protein engineering and fluorescence

microscopy have converged to make the observation of

neural activity across large populations of neurons possi-

ble. The first step in this process was the development of

genetically-encoded fluorescent indicators of physiologi-

cal events (principally voltage or calcium flux) that reflect

neural activity (reviewed by [1], and compared in

Table 1). The fluorescent signals from these probes were

initially detected with 2-photon microscopes, but more

recently, selective planar illumination microscopy

(SPIM) [2–5] and volumetric imaging techniques [6–9]

have provided faster alternatives. Each of these indicators

and imaging approaches comes with its advantages and

limitations (outlined in Table 1), and different combina-

tions are appropriate for different biological questions.

These genetically-encoded indicators and imaging tech-

niques provide a framework for observing activity across

populations of neurons with cellular resolution, but

experiments still depend on the biological properties of

the model organism. Zebrafish gained popularity as a

model system in the 1990s, when they were used princi-

pally for developmental studies. In addition to generally

desirable properties (small size, large broods, and more

recently nimble genetics), their utility to developmental

biologists sprang from a pair of inherent biological prop-

erties: they develop externally and are transparent at early

life stages. At the time, few foresaw how beautifully these

attributes would dovetail with the more recent optophy-

siological techniques outlined above [22]. Following a

number of studies tracking activity across populations of

neurons in specific parts of the larval zebrafish brain, this

approach was eventually used to image activity across the

entire brain with cellular resolution during behavior [23].

In this review, we will discuss subsequent studies involv-

ing whole-brain (or large-population) functional imaging
www.sciencedirect.com
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Table 1

An overview of the major strengths and limitations for popular methods of imaging neural activity

Method Strengths Limitations Relevant references

(select examples)

Imaging

SPIM High speed and large field of

view. Relatively inexpensive.

Basic open sourced

configurations are simple to set

up.

Illumination is orthogonal to the

imaging, which some preparations

will not tolerate. Visual stimulation of

the larva from reflections from

illumination plane, but see [10].

Stripe artifacts that mask responses

or produce spurious signals.

Requires a transparent/cleared

sample and multiple objectives.

[2,5,11,12]

2-Photon Lack of unintended visual

stimulation of the larva. Deep

tissue penetration with long

wavelength light.

Slow speed, especially for volumes. [13]

Extended depth of field

light sheet microscopy

Fast volumetric imaging, no

mechanical motion near sample

Same limitations as SPIM. Requires

deconvolution of the images.

[8,14]

SCAPE Fast volumetric imaging, no

mechanical motion near sample,

single objective

Comatic aberrations, slightly lower

spatial resolution than native SPIM.

[6]

Light-field microscopy

(LFM)

Fast volumetric imaging Resolution and requires

deconvolution

[7,15]

Indicators of activity

Genetically Encoded

Calcium Indicators

(GECIs)

Good signal to noise ratio

Slow kinetics aid in imaging

volumes

Slow kinetics makes spike inference

difficult.

Difficult to infer temporal sequences

of neural activity across populations.

[16,17]

Genetically Encoded

Voltage Indicators

(GEVIs)

Fast temporal kinetics Low signal to noise ratio.

High frame rates produce large files

and complicate imaging large

populations.

[18–21]
in larval zebrafish and the contributions that they have

made toward characterizing sensory processing and sen-

sorimotor behavior. We will also discuss this approach’s

limitations for testing the behavioral contributions made

by the observed activity, and for gauging the functional

circuits through which patterns of activity flow. Finally,

we will discuss emerging technologies that, combined

with population-scale functional imaging, may close the

loop to provide holistic descriptions of functional circuits

that span anatomy, connectivity, function, and behavior.

Observing neural pathways for sensory
processing and the generation of behavior
One of the primary roles of the brain is to produce

behavior, so measuring brain activity in behaving animals

has obvious advantages. However, a traditional constraint

of calcium imaging is imposed by its intolerance of

motion. This restricts imaging to the brain’s spontaneous

activity [24–26] and sensory responses to modalities for

which stimuli are compatible with a stationary animal

(normally embedded in agarose, in the case of zebrafish

larvae). These modalities include olfaction [27,28], audi-

tion [29–31], somatosensation [32], and most notably

vision [33�,34–42]. Other modalities are fundamentally

linked to the animal’s movement through space, and
www.sciencedirect.com 
these are more difficult to study in immobilized animals.

The lateral line neuromasts, which are responsible for

detecting water flow, can be stimulated with puffs of

water in a tail-free preparation [29,30], but more realistic

lateral line stimulation may be possible through micro-

fluidics (Figure 1a–c). The vestibular system, tasked with

detecting gravity and acceleration, poses particular chal-

lenges to functional imaging, although controlled tilting

stimuli [43] may be compatible with calcium imaging on

custom-built microscopes, and optical trapping of the

otoliths has been shown to stimulate the vestibular sys-

tem in stationary animals [44�] (Figure 1d–g).

Immobilized preparations also restrict behavioral outputs,

although movements of the tail and eyes become evident

if they are freed from the agarose that immobilizes the

head. Distinct movements of the tail in such preparations

can be interpreted as behavioral swimming, turning,

postural correction, prey tracking, or startle, and this

permits patterns of neural activity to be correlated to

individual movements or combinations of movements

representing more complex behaviors [34,45]. Similarly,

movements of the eyes in immobilized larvae correspond

to more complex behaviors in nature. In the case of the

optokinetic response (OKR), the eyes sweep to follow
Current Opinion in Neurobiology 2018, 50:136–145
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Figure 1
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Sensory stimulation during whole-brain imaging. (a) A microfluidics device in which a 6dpf larva can be mounted (b) to deliver forward (green

arrows) or reverse (red arrows) water flow stimuli. Following calcium imaging and analysis, different categories of neural response (colors, (c)) can

be mapped back onto the brain. The utricular otoliths (red circles (d)) mediate vestibular perception, so optical trapping (schematic in (e),

quantified in (f)) should mimic physical movement of the animal. Accordingly, larvae exposed to optical trapping (right (g)) show compensatory tail

movements that are directional and scaled to the stimulus strength. (h) A closed-loop preparation with visual stimulation that is modified based on

activity in spinal motor neurons. In the absence of motor activity, smooth optic flow is delivered, but this stimulus is slowed or reversed when

motor neurons are active (i). The virtual strength of the tail can be changed while whole-brain calcium imaging is performed. (j) The schematic

Current Opinion in Neurobiology 2018, 50:136–145 www.sciencedirect.com
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horizontal optical flow, regularly executing rapid saccades

in the opposite direction. Whole-brain calcium imaging

during OKR performance has revealed the neural corre-

lates of both the sensory and the motor elements of the

behavior [38,46]. In the context of predatory behavior, the

two eyes converge on the forward visual field immedi-

ately before a strike, and this convergence also occurs in

response to fictive prey in an immobilized preparation.

The fact that this is a rare movement, occurring only

during predation, aided in linking it to specific patterns of

neural activity in small assemblies of tectal neurons

[26,33�].

In natural settings, larvae experience a constant interplay

between stimuli and behavioral responses. The brain’s

functional circuitry, having evolved under these condi-

tions, is not always well gauged in experiments where

stimuli and behaviors take place in isolation. This again

highlights the limitations of functional imaging in an

immobilized preparation, where the larva cannot behave

freely. Although calcium imaging in free-swimming lar-

vae has been demonstrated previously, including using a

bioluminescence technique not requiring optical excita-

tion light [47], until very recently it has lacked cellular

resolution [48] and been limited to moments when the

larva is motionless [49,50]. The establishment this year,

by a pair of groups [51��,52��], of microscopes capable of

tracking free-swimming larvae while simultaneously per-

forming volumetric imaging at cellular or near-cellular

resolution is therefore a welcome and exciting develop-

ment (Figure 1j,k).

An alternative to free-swimming preparations can be

found in closed-loop paradigms, in which behavioral

responses like movements of the tail or eyes feed back

to influence the (typically visual) stimuli presented to the

animal [33�,53,54,55�,56,57] (Figure 1h,i). In theory, this

provides a life-like stimulus–response relationship in an

immobile preparation. Recently, Naumann and collea-

gues [58�] used a closed-loop approach to dissect, at the

behavioral level, the sensorimotor transformation under-

pinning the optomotor response (OMR), during which

larvae swim along with sustained visual flow. They paired

this with whole brain calcium imaging in stationary larvae,

thus identifying specific brain regions and patterns of

activity underlying the OMR. Kawashima and colleagues

[55�] demonstrated a role for the dorsal raphe nucleus in

motor learning. They used a closed-loop virtual swim-

ming environment and changed how far the larva ‘swam’

with a given motor command. Serotonergic neurons were
(Figure 1 Legend Continued) configuration for whole-brain calcium imagin

keep the animal in frame and in focus during imaging. (k) Shows the path o

time points of the sequence. (a–c) Show unpublished data from the Scott la

and k) are modified from [52��]. Scale bars are 2 mm in (b) and 100 mm in (c

www.sciencedirect.com 
found to be responsible for learning the efficacy of these

virtual motions.

Closed-loop paradigms and new techniques for functional

imaging in free-swimming larvae each have their advan-

tages. Free-swimming preparations provide the ultimate

closed loop, where behaviors and their effects are natu-

rally linked. Full experimental control over certain sti-

muli can be challenging in free-swimming larvae, how-

ever, and the current technologies for the targeted

illumination of neurons (described in the next section)

may not be able to keep up with a moving target (depend-

ing on the spatial resolution required). Both of these

concerns are alleviated in a stationary closed-loop prepa-

ration, but it always has to be carefully assessed whether

the engineered pairing of behavior and stimulus is suffi-

ciently realistic to reveal the true nature of sensorimotor

behavior.

Assessing causation in the context of whole-
brain imaging
A majority of the work described above seeks to link

patterns of activity in the brain to stimuli or behaviors

with which they coincide. The advent of whole-brain

functional imaging with cellular resolution makes this a

powerful approach, as it provides a complete picture of

responses found in neurons throughout the brain. This

approach does not, however, reveal causal relationships

among active cells, and as such, has limited utility in

elucidating the underlying circuits. Instead, it provides an

authoritative departure point for studies of the circuits

that these neurons form, and the pathways through which

the observed activity travels.

A decade ago, optogenetics emerged with the promise of

elucidating the necessary and sufficient circuitry (through

targeted silencing and activation, respectively) for beha-

viors of interest. Although optogenetic manipulations

have been used in zebrafish circuit studies

[42,59,60��,61–63], ablations and genetically encoded

toxins also remain workhorses for assessing causality in

neural circuits [35,40,58�,64,65].

The information drawn from observing or manipulating

activity across populations of neurons provides clear indi-

cations of how information might flow through the brain,

but this can only be placed into a convincing circuit-scale

model if the structure, connectivity, and neurotransmitter

type of the neurons are also known. These types of data

become available if driver lines for bipartite systems like

Gal4/UAS exist that are specific to neurons of interest. In
g in free-swimming larvae. Predictive code and automated 3D tracking

f a free-swimming larva, with whole-brain images taken from different

b, (d–g) are modified from [44�], (h and i) are modified from [55�], and (j

), and 200 mm in (d).

Current Opinion in Neurobiology 2018, 50:136–145
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Figure 2

Ti:Sapphire Laser

BE SLM1

SLM2

CL

L1

z

L2

L4

1

0

L5 L3

G

OBJ1OBJ2 FFPCCD

100 μm 50 μm -50 μm -100  μm0 μm

Functional characterization +
photoconversion

5s

1

2

3

4

5

6

7

8

9

10

11

12

0.3 DF/F

Z
X

y
μm

μm

μm

150

100

50

50

-50

-50

-50

-150

-100

0

0

0

(c)(a)

(b)

(d) (f)(e)

Current Opinion in Neurobiology

Light sculpting, optogenetics, and morphological techniques to complement whole-brain imaging. By combining two spatial light modulators

(SLMs) with a galvo mirror (G), and other optical elements (a), Hernandez et al. [76�] illuminated disc-shaped regions at different depths of a

Current Opinion in Neurobiology 2018, 50:136–145 www.sciencedirect.com
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these cases, Gal4 drivers for particular types of neurons

can be crossed separately to UAS-linked activity probes

and anatomical markers, and their functional and mor-

phological characteristics can be assessed in parallel. The

approach’s incisiveness is eroded in zebrafish, however,

by the breadth of expression that many Gal4 transgenes,

especially enhancer trap lines, show. In contrast to the

lines produced in invertebrates such as Caenorhabditis
elegans and Drosophila, zebrafish transgenics generally

drive expression in multiple brain regions and cell types

[66–71], likely as a result of more complex vertebrate

enhancers. Nonetheless, this approach has been used to

reveal the functional characteristics of anatomically delin-

eated neurons in the tectum [72,73] and spinal cord [63],

among other regions. Along the same lines, genetic mar-

kers or immunostaining of neurotransmitter subtypes can

be combined with functional imaging, allowing neurons’

functional profiles to be linked to their neurotransmitter

use [35,55�,73]. A set of neurotransmitter subtype-specific

and other targeted Gal4 lines, recently introduced by

Förster and colleagues [74�], should facilitate this

approach. These lines will also, when crossed with

UAS-linked activity indicators, will allow brain-wide

but neurotransmitter-specific activity to be observed.

Targeted, spatially restricted manipulations are also pos-

sible through optogenetics if the activating or silencing

light can be restricted to small volumes corresponding to

the neurons in question, and light sculpting using spatial

light modulators (SLMs) can deliver light to neuron-scale

volumes deep within live zebrafish larvae [75]. In an

innovative extension of this principle using a pair of

SLMs, Hernandez et al. [76�] recently achieved the

targeted illumination of numerous pre-specified neurons

at different depths of the zebrafish larval spinal cord,

raising the prospect of targeted circuit-scale manipula-

tions of activity (Figure 2a–c). This result highlights the

capabilities that are emerging as a result of rapid recent

advances in optical physics, and how well suited these

technologies are to the zebrafish model.

Putting it all together: studies that combine
activity, function, and anatomy
As outlined above, whole-brain functional imaging pro-

vides a new and powerful perspective on the zebrafish

nervous system, but relies on complementary anatomical,

optical, and genetic techniques to deliver circuit-level

insights. In a recent paper that demonstrates the power of

this combined approach, Dunn et al. [60��] studied

sequences of spontaneous turns that are thought to

improve exploration in the absence of salient cues. They
(Figure 2 Legend Continued) homogeneous medium (b) and neuron-scale

optogenetic stimulation of neurons in the nucleus of the medial longitudinal

downstream neuron in the hindbrain (bottom of d and cell 1 in panel (e)). Su

morphology (f). (a–c) are modified from [76�] and (d–f) are modified from [77

www.sciencedirect.com 
combined functional imaging with rapid targeting of

neurons for photostimulation, photoactivation, or abla-

tion. These tools allowed them to show the anterior

rhombencephalic turning region (ARTR) was central to

this behavior.

Using a different approach, Dal Maschio et al. [77��]
(Figure 2d–f) have developed an integrated platform to

probe neurons’ activity while characterizing their mor-

phology and connectivity. They combined these distinct

types of information for neurons in the nucleus of the

medial longitudinal fascicle (nMLF) to reconstruct the

neuron-by-neuron contributions that control tail bending.

Whole-brain electron microscopy is now feasible in zebra-

fish, and can be registered against optical measurements

of neuronal activity, as shown by Hildebrand et al. [78�].
This approach places active neurons in the context of a

complete brain projectome, and in principle, could be

linked in the future to complete connectomes. This

represents an important fusion of activity with fine-

grained anatomy, but the approach is unlikely to become

routine in the near future, given the need to map the

anatomy, using EM, in each animal studied.

Brainwide mapping of cellular properties such as neuro-

modulator phenotype has been combined with brainwide

neuronal activity measurements during behavior by

Lovett-Barron et al. [79�]. Activity correlates of alertness

were first mapped through two-photon imaging during

behavior, after which the brain was fixed, and cell types

across the brain were assessed through immunohis-

tochemistry. Registering the activity to the anatomy

allowed Lovett-Barron et al. to identify neuromodulatory

loci across the entire brain that set alertness levels.

Whether it be single cell morphology, an EM-based

wiring diagram, or information on the cells’ neurochem-

istry, the ability to combine functional imaging data with

other pertinent biological information in individual ani-

mals yields datasets disproportionately more powerful

than those derived from studying function and anatomy

separately.

Conclusions
In the few years since the first whole-brain calcium

imaging studies in zebrafish larvae, technological progress

has continued apace. In vivo holographic light sculpting

has emerged, promising experimental control over pre-

specified neurons throughout large volumes of the brain,

and thus bringing functional analyses of sparsely
 volumes in intact brain tissue (c). Dal Maschio et al. [77��] used

 fasciculus (top (d)) and calcium imaging to identify a responsive

bsequent targeted photoconversion of this neuron revealed its
��]. Scale bars are 50 mm in (d) and 10 mm in (f).

Current Opinion in Neurobiology 2018, 50:136–145
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distributed circuits within reach. Imaging technologies

that can be applied to free-swimming larvae are making it

possible to view the functioning brain in naturalistic

settings. Increasingly, data from whole-brain imaging

are being combined with neurochemical and anatomical

information to put activity into a more relevant biological

context. By all indications, we are at the dawn of an

astounding period of discovery into the circuit-level

mechanisms underlying perception and behavior.

As hurdles to imaging this activity fall, the task of

processing and interpreting these vast data become

more daunting [80,81]. The storage requirements for

whole-brain datasets mean that sharing these data is

challenging. The connectomics community and others

have attempted to meet similar challenges with online

visualization and annotation of terabyte-scale datasets

such as KNOSSOS [82], Neurodata (https://neurodata.

io), and Cytomine [83]. As more groups gain the ability

to collect these data, there is also an increasing incentive

to standardize data collection and annotation so that data

from different groups can be registered, or at least

compared, against each other. Efforts are already under-

way to bridge some of the brain atlases used in the

community [84,85], and these may offer the prospect of

a common framework on which to register results across

groups. Ultimately, a goal would be to combine the

different modalities of information, from whole-brain

activity maps to EM datasets, into a searchable database

of neuronal types and morphologies, along the lines of

searchable databases that already exist for gross neuro-

nal morphology [86,87].

Having a reproducible analysis workflow and repositories

for data sharing across the zebrafish neuroscience com-

munity would expand such comparisons, as well as allow

exploratory analysis of these datasets beyond what indi-

vidual groups are able to do. Open science efforts, such as

the Allen Institute for Brain Science, have shown the

benefits that data sharing can have in attaining and

integrating new knowledge, as well as improving the

reliability of our interpretations. One could imagine such

an international consortium of zebrafish neuroscientists

coming together to share and integrate their data in an

effort toward a holistic functional model of the larval

zebrafish brain.
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